
JSIMS Internal JSIMS Internal
HLA I/F SpecificationHLA I/F Specification

ModificationsModifications
JSIMS Enterprise

Dr. David Pratt
Technical Director
prattd@jsims.mil

Presented at the Architecture Management Group
April 9 and 10, 1997

JSIMS EnterpriseJSIMS Enterprise

Outline

• What is JSIMS?
• JSIMS challenges relevant to the HLA
• Proposed changes to the HLA RTI Interface Specification and

API to meet JSIMS needs

As the HLA evolves, the JSIMS partner programs need to
take a active role in shaping the future directions.

This presentation represents the first evaluation of what is needed for
internal compliance.

JSIMS EnterpriseJSIMS Enterprise

44

JSIMS Warfighter Vision

• JSIMS is a simulation system that supports the
twenty-first century warfighter’s preparation for real world
contingencies.

• The system provides garrison and deployed exercise capability
to meet current and emerging training and operational
requirements in a timely and efficient manner.

• By interfacing to the warfighter’s real go to war systems, the
view into the simulation world mirrors that of the real world.

JSIMS EnterpriseJSIMS Enterprise

55

• JSIMS is a single, distributed, seamlessly integrated simulation
environment.

• It includes a core infrastructure and mission space objects, both
maintained in a common repository.

• These can be composed to create a simulation capability to
support Joint or Service training, rehearsal, or education
objectives.

JSIMS Technical Vision

JSIMS EnterpriseJSIMS Enterprise

JSIMS Challenges

• Composability • Interoperability • Security
• Scalability • Reduced exercise overhead
• Expandability • Reusability

 JSIMS is an extreme performance federation
– Hundreds of thousands of objects
– Dozens or hundreds of computing hosts
– Real-time performance with Human in the Loop C4I interfaces
– Real-time, scaled faster than real-time, and as fast as can run performance under

a range of conditions (e.g., DSS, doctrine, education)
– Widely distributed
– Multiple Levels/Multi-level Security
– Using many network/communications technologies potentially simultaneously
– Tight coupling with C4I systems
– Interoperability between many hundreds of independently-developed models

 For JSIMS to be internally HLA-compliant and meet these goals,
certain additions are needed to the current HLA definition, many of
which are implementation vs. definitional issues. Many of the needed
enhancements have been demonstrated in the STOW RTI-S version.

JSIMS EnterpriseJSIMS Enterprise

FOM WGCI IPT CR IPTMSO IPTInterface

Federation Objects

A
p

p
licatio

n
s

S
u

p
p

o
rt

S
ervices

O
b

ject
S

ervices

Legend:

Modeling
Framework

Translation
Services

Common
Building
Blocks

System Abstraction Layer

Life Cycle
Applications

JMSRR
Repository

Management
Tools

Mission
Space
Models

JMSRR
Support
Services

External
Systems

JSIMS Object Services

Common Data Infrastructure HLA RunTime Infrastructure

JSIMS Layered Software Architecture

JSIMS EnterpriseJSIMS Enterprise

JSIMS Approach to HLA Compliance

• The JSIMS Architecture is fully HLA compliant:
– JSIMS is its own federation

• need to clarify rules concerning distributed federates
– The JSIMS Federation Objects are the JSIMS FOM, which will be

documented using the HLA OMT format
– All JSIMS run-time state data is distributed using the RTI
– All RTI interaction is via the RTI interface specification
– Each attribute of each federation object is owned by a single model which

may change during execution
– Each model and/or application is a federate and the objects/interactions it

supports are its SOM
– The JSIMS Modeling Framework supports ownership transfer via the RTI
– JSIMS time management functionality is based solely on the RTI time

management facilities, the definition & implementation of which is
insufficient given current RTI developments

JSIMS EnterpriseJSIMS Enterprise

JSIMS Approach to Federation with other
HLA-Compliant Systems

Gateway
RTI

MSOs

Infr
RTI

MSOs

Infr
RTI

MSOs

Infr
RTI

MSOs

Infr
RTI

JTCTS CCTT MRCI

JSIMS

Internal JSIMS Communication
using RTI and internal JSIMS FOM

BFTT BFTT BFTT

BFTT Internal Communication
Gateway

RTI

The JSIMS
Gateway translates
between the JSIMS
internal FOM (now
considered the
JSIMS SOM) and
the Common FOM.

Communication
between JSIMS and
other federates uses
the RTI and a
commonly agreed
upon FOM.

Inter-Federate RTI

JSIMS EnterpriseJSIMS Enterprise

Latency/Bundling

• Recommendation:
– The application should be able to specify to the RTI the maximum

tolerable latency and maximum tolerable packet size.
• Relative priority of data.

• Rationale:
– The ability to bundle attributes into packages is considered

critical to achieving performance gains for JSIMS.
– Bundling, however, increases latency.
– Thus, the application needs to be able to carefully control how latency and

packet size are traded off to achieve maximum performance

JSIMS EnterpriseJSIMS Enterprise

Network QoS Parameters

• Recommendation:
– The application needs to be able to specify to the RTI any network

Quality-of-Service parameters needed to operate in a particular network
environment.

– If the RTI can detect the performance parameters of the underlying
network, it needs to be able to communicate this information back up to
the application.

• Rationale
– In general, the RTI controls multicast groups or point-to-multipoint

connections.
– In some situations, the application must decide on how to apportion

resources, thus it needs information from the RTI on underlying network
technology, as well as the ability to set network parameters to meet the
exercise’s objectives.

• Other comments:
– Some of this might be done via interactions with the MOM.

JSIMS EnterpriseJSIMS Enterprise

Active/passive subscription based on network
address

• Recommendation:
– The application must be able to specify that the RTI subscribe to all

data on a particular LAN under both of the following conditions:
• Subscribe to all information on a particular LAN without causing any more

traffic to flow than would in the absence of this subscription. (Passive)
• Subscribe to all information that is being generated on a remote LAN and cause

that information to flow to the current machine. (Active)

• Rationale:
– Data collectors need to collect all information on a given LAN, to allow

efficient parallel collection of data under certain circumstances.
– Sometimes these data collectors are not located on the LAN they want to

collect from.

JSIMS EnterpriseJSIMS Enterprise

Direct Publication/Subscription to MC Groups
(or their abstract equivalent)

• Recommendation:
– The application needs to be able to publish and subscribe directly to the

underlying multicast groups, rather than using the DDM interface.

• Rationale:
– Large exercises require distributed data collection, in which a number of

collector machines sample some fraction of the traffic.
• If the exercise is large enough, numerous loggers are needed for each LAN.

– In this case, they need to be “load-balanced,” to insure that individual
collectors do not get overloaded.
• Because Routing Spaces do not give the application enough control over what

data gets collected, it is impossible to efficiently load balance using Routing
Spaces (i.e. the Routing Space “knob” is not precise enough).

• The only way to efficiently load-balance is to enable subscription based on
individual MC groups, since these are the actual underlying mechanisms for
data transfer.

– Playback requires publication to the same groups.

JSIMS EnterpriseJSIMS Enterprise

More information is required about data being
delivered

• Recommendation:
– For each reflect_attribute_values and reflect_interaction call made

by the RTI to the application the RTI needs to provide additional meta-
data:
• what MC Group/Stream/Channel the information came from,
• the transport type of the data,
• the time management scheme under which the data was sent,
• what Routing Space Subscription this data was in response to.

• Rationale:
– The first three pieces of information are required for accurate playback.
– The last piece of information is required to efficiently deliver the data to

the part/component of the application that asked for it.

JSIMS EnterpriseJSIMS Enterprise

The RTI should not read or write directly to the
hard disk.

• Recommendation:
– The RTI API needs to be changed such that the FED and RID

information can be delivered to the RTI by the application, rather than
having the RTI read directly from the local machine’s hard drive.

• Rationale:
– Allow remote configuration, startup and management of federates.
– Secure configuration managed systems require all information to be

brokered by the appropriate identified and authenticated authority.
– The easiest way for the RTI to deal with this problem is to push this

functionality up into the application, and then read and write to the hard
drive through means (i.e. iostreams) provided by the application.

– The alternative is to build security and configuration management
functionality directly into the RTI, making it less “lean and mean.”

– Thus the RTI API needs to be changed to allow the application to deliver
and the RTI to request the appropriate iostreams to perform disk I/O.

JSIMS EnterpriseJSIMS Enterprise

API additions are needed to tell the RTI to save
and restore its state

• Recommendation :
– Additional API calls are required to tell the RTI to save its state to a

user-supplied iostream.
– Calls are further required to tell the RTI to restore its internal state from a

provided iostream.

• Rationale:
– The RTI, as a piece of the JSIMS system, will need to be able to

checkpoint its state and restore it from a checkpoint as part of the the
overall system.

– Even though the RTI does not remember FOM object state, it does have
some state information (such as routing tables, subscription lists, etc.) that
needs to be preserved from one restart to the next.

JSIMS EnterpriseJSIMS Enterprise

The RTI needs the ability to tag data with a
security classification

• Recommendation:
– All data shipped by the RTI needs to be tagged with a security

classification provided by the application.
– Additional “security attributes” will not do the job, as it is difficult to get

the RTI to transmit unchanged attributes along with changed attributes.
– Packets leaving the RTI should contain only information at a single

security level (i.e. Unclassified or Secret, etc.) Mixed-classification
packets must be disallowed.

• Rationale:
– Security is a very large issue for JSIMS.
– JSIMS has a three-phase security plan leading to a multi-level secure

system.
– The change above will allow JSIMS to operate at least initially in a Phase

II-Multiple Levels of Security environment.

• Other comments:
– The security implications for RTI software engineering are only now being

addressed in a systematic fashion by the JSIMS Security Working Group.
Expect more requirements as the JSIMS security plan evolves.

JSIMS EnterpriseJSIMS Enterprise

Proposed Changes/Additions to I/F Spec
(Summary)

• Latency/bundling parameters changeable by applications
• Network QoS parameters need to be set by the applications
• Active/passive subscription based on network address
• Publication and subscription directly to MC groups (or their

abstract equivalent) as well as current methods
• More information is required about data being delivered
• The RTI must not read or write directly from/to the hard drive
• The RTI must be able to comprehensively save and restore its

state
• Data needs to be tagged with security level

Many of these features can be implemented below
the I/F Spec and hidden from the user.

The question is should they?

JSIMS EnterpriseJSIMS Enterprise

Summary and Conclusions

• JSIMS is an extreme performance federation with a large
array of difficult-to-satisfy requirements

• JSIMS needs additions to the RTI API and I/F spec to support its
current architecture, which is internally HLA-compliant

• Most of the changes JSIMS requires have been pioneered on the
STOW program as part of the RTI-s design and development

The JSIMS program, as the DoD’s flagship simulation program,
wishes to evolve the HLA in a direction consistent with its goals of

plug-and-play composability, object-oriented design and
implementation from the ground up, multiple levels/multi-level
security, enhanced reliability, and reduced exercise overhead.

JSIMS looks forward to working with the AMG to achieve these
goals.

JSIMS Internal JSIMS Internal
RTI ImplementationRTI Implementation

IssuesIssues
JSIMS Enterprise

Dr. David Pratt
Technical Director

prattd@jsims.mil

Presented at the Architecture Management Group
April 9 and 10, 1997

JSIMS EnterpriseJSIMS Enterprise

Outline

• Suggested approaches to RTI internal architecture and software
engineering methods to accommodate JSIMS requirements

• Some implementation issues of interest to JSIMS
• Suggested future directions for the HLA

As the HLA evolves, the JSIMS partner programs need to
take a active role in shaping the future directions.

This presentation represents the first evaluation of what is needed for
internal compliance.

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
Design Specification

• Plug-and-play RTI that allows federates to “pay-as-they-go” for
needed functionality

• RTI that is designed to be composable/tailorable to be able to
creatively address JSIMS’s extreme requirements

• Clarification on the RTI’s method of addressing threading issues:
– single threaded application, single threaded RTI
– multi-threaded application, single threaded RTI
– single threaded application, multi-threaded RTI
– multi-threaded application, multi-threaded RTI

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
Design Specification

• Approach to memory management that maximizes performance
by minimizing data copying inside the RTI and between the RTI
and the application

• Documentation on RTI-to-RTI protocols, including how data is
communicated and in what format.

• If reliable multicast is used, documentation of exactly how the
scheme works, with particular emphasis on how it scales.

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
System Abstraction Layer

• JSIMS has a requirement to build a system that is portable
over a wide range of different platforms.

• JSIMS’s architectural feature to meet this goal is to have all
access to the operating system or hardware be through a System
Abstraction Layer (SAL).

• In particular, JSIMS requires as part of the SAL a “Virtual
Network Layer,” an encapsulation of the underlying
communications functionality so that different technologies can
be inserted easily into the system:
– TCP/IP, native ATM, native FDDI, Tactical Packet Network, shared

memory

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
System Abstraction Layer

• JSIMS understands that such an encapsulation does not come
without cost; however, JSIMS requires that appropriate
engineering studies be done to determine the cost of such a layer
consistent with maximizing the RTI’s performance and
delivering a tailorable RTI.

• JSIMS would like to work with the AMG and the RTI 2.0
designers to develop a SAL that can meet both the RTI’s and the
JSIMS applications’ needs

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
Other Issues

• An application using a single instance of the RTI should
be able to join and actively participate in multiple federations
with multiple FEDs and RIDs at the same time
– Used for multi-exercise Exercise Management tools required in the JSIMS

family of TRDs.

• The RTI must be able to send data to multiple networks
simultaneously (at the direction of the application).
– Used for creating an intelligent Router, routing information from one

network (i.e. Ethernet) to another (i.e ATM).

JSIMS EnterpriseJSIMS Enterprise

Software Engineering / Architectural Issues
Other Issues

• The RTI should be designed such that the failure of any single
federate or group of federates does not cause the entire federation
to fail.
– In such cases, the disposition of objects owned by the failed federate(s)

should be specifiable on a federation execution by federation execution
basis.
• hand them off to willing recipients
• RTI assumes (temporary) ownership
• they all disappear, etc.

• The RTI should be able to save and restore its state for
checkpoint/restart purposes.

JSIMS EnterpriseJSIMS Enterprise

RTI Implementation Issues Relevant to JSIMS

• TSO should maintain causality and result in a repeatable
federation execution.

• JSIMS needs to be able to switch time management schemes in
the middle of a federation execution.

• Zero-Lookahead and discrete event timing schemes are required
as one of the “modes” of time management.
– pseudo-real time (including scaled pseudo-real time)
– event based

• JSIMS needs the RTI to run on many platforms, but in particular:
– Sun/Solaris, SGI/Irix, PC/NT, PC/Solaris, HP/HPUX, ALPHA/NT.

• Source code needs to be made available for developers.
• Clearly delineated and documented name space conventions.

JSIMS EnterpriseJSIMS Enterprise

RTI Implementation Issues Relevant to JSIMS

• JSIMS may want an RTI that runs entirely on the Java Virtual
Machine in addition to a C++ and Ada version.

• Internal RTI performance information (including updates/reflects
per second, routing space efficiency, etc.) should be made
available to the application.

• The RTI should not read directly from or write directly to the
hard disk, rather to application-provided iostreams.

• Location independent file system names
– Use of relative path names only

JSIMS EnterpriseJSIMS Enterprise
• Support for the ability to define “Sub-federations” with “Sub-

FOMs” used for hierarchically segmenting exercises.
• Complex (“nested”) attributes for arbitrary composition

hierarchies.
• Flexible interaction adjudication (receiver, sender, 3rd party,

other)
• RTI should automatically handle all data marshaling.
• FOM tools based on object-oriented computer assisted software

engineering tools commonly available in the commercial market,
along with a more OO approach to FOM definition (i.e. a focus
on interfaces and substitutability rather than data formats).

Future Directions For the HLA based on JSIMS
Full Operating Capability (FOC) Goals

JSIMS EnterpriseJSIMS Enterprise

Future Directions For the HLA based on JSIMS
Full Operating Capability (FOC) Goals

• Fully Object-oriented API
– JSIMS is preparing a strawman.

• Security
– Compile-time type safety through a compiled-in FOM.
– JSIMS wants the AMG to tackle the tough security issues facing us all, by

designing the appropriate amount of security into the RTI.
– The AMG should then work to get these RTI security features and

functions accredited by the appropriate government agency.

• An object-oriented CCSIL (CCSIL 2.0 ?) to support the JSIMS
framework-based architecture.

JSIMS EnterpriseJSIMS Enterprise

Summary and Conclusions

• JSIMS is an extreme performance federation with a large
array of difficult-to-satisfy requirements

• JSIMS has a number of architecture, design, and implementation
constraints on any given RTI implementation to meet JSIMS
performance, security, reliability, and composability
requirements

The JSIMS program, as the DoD’s flagship simulation program,
wishes to evolve the HLA in a direction consistent with its goals of

plug-and-play composability, object-oriented design and
implementation from the ground up, multiple levels/multi-level
security, enhanced reliability, and reduced exercise overhead.

JSIMS looks forward to working with the AMG to achieve these
goals.

